Квантовый двигатель, или как обмануть законы термодинамики

 
Воплотиться в реальность миру стимпанка отчасти помешала сама природа, в частности – второй закон термодинамики, по которому любая замкнутая система стремится к равномерному рассеиванию энергии-тепла. Это накладывает определенные ограничения практически на любые двигатели. 
 
Почти непреодолимым препятствием на пути к максимально эффективному (идеальному) двигателю также является трение при совершении механической работы – о воздушную среду, о детали механизма и т.д.
 
Таким образом, часть энергии, выделяемая при преобразовании топлива, безвозвратно теряется, что приводит к снижению эффективности того или иного двигателя. Избежать трения и потери энергии в макроскопических (то есть в крупных, вроде автомобильного двигателя внутреннего сгорания) системах довольно трудно.
 
Появляется закономерный вопрос – можно ли обойти ограничения макромира, «спустившись» в микромир?
   

Достаточно одного атома

 
Как показывает ряд исследований, посвященных созданию квантовых двигателей, можно. Дело в том, что на квантовых масштабах термодинамические процессы проходят совсем по-другому. Это даже привело ученых к необходимости создания теории, которая объединила бы квантовую механику и термодинамику.
 
В рамках разработки такой теории физиков привлекла проблема создания квантового двигателя, который мог бы производить работу абсолютно без потери энергии, избегая не только трения, но и теплообмена с внешней средой. Другими словами, такой двигатель достиг бы максимальной эффективности.
 
Последней и одной из наиболее впечатляющих на данный момент работ в этом направлении является опубликованное в журнале Scientific Reports исследование ученых из США, Великобритании и Италии, в котором теоретически обосновывается возможность функционирования подобного двигателя, обладающего адиабатическими свойствами (то есть лишенного теплообмена с внешней средой).
 
В частности, физикам удалось адаптировать цикл Отто – термодинамический процесс, описывающий действие идеального двигателя внутреннего сгорания – к масштабам микромира. Позволили им это сделать современные достижения теоретической физики. Например, ученые использовали экспериментально доказанную теорему флуктуаций, которая аккуратно корректирует второй закон термодинамики и допускает, что энтропия (рассеивание энергии) со временем может не только увеличиваться в некоторых системах, но и уменьшаться. 
 
<sup><span style=font-size:12px;><span style=color:#808080;> Четыре стадии цикла Отто, адаптированного к квантовым масштабам, в котором теплота (heat) входит в осциллятор, затем выходит, совершая механическую работу (work) / © A. del Campo, et al.</span></span></sup>

 Четыре стадии цикла Отто, адаптированного к квантовым масштабам, в котором теплота (heat) входит в осциллятор, затем выходит, совершая механическую работу (work) / © A. del Campo, et al.

 
Используя так называемые «короткие пути для достижения адиабатичности» (shortcuts to  adiabaticity), ученые показали, как мог бы работать двигатель на основе цикла Отто размером с атом. «Поршнем» в нем являлся бы квантовый гармонический осциллятор, окруженный двумя микроскопическими камерами для подвода теплоты к рабочему телу (осциллятору) и его охлаждению. Сама работа, как и в стандартном, не квантовом цикле Отто, совершалась бы при помощи сжатия и расширения рабочего тела.
 
Отсутствие трения обеспечивалось бы «суперадиабатичностью» – состоянием, имитирующим работу двигателя при медленных адиабатических процессах. Расчеты ученых демонстрируют, что подобный двигатель функционировал бы очень медленно, однако его цикл был бы обратимым и конечным во времени, что позволило бы ему все же совершать некоторую работу.
 

А что все это значит?

 
Теоретическое обоснование концепта рабочего «суперадиабатического» квантового двигателя является шагом вперед на пути к осуществлению давней мечты физиков – построению двигателя с максимальной эффективностью при выдаче максимальной мощности. Это, конечно, не вечный двигатель, но тоже очень впечатляющая и куда более реалистичная перспектива.
 
Также данная работа ученых представляется полезной в деле разработки квантовой термодинамики – теории, которая примирила бы термодинамические процессы и физику элементарных частиц.
 
«Термодинамика описывает процессы с участием сразу многих частиц, и ее квантовая адаптация должна так же адекватно отражать многочастичные процессы. Осуществление подобных концептов – вроде того, что мы предложили в своей работе – позволит нам значительно лучше контролировать эти процессы», – говорит Мауро Патерностро (Mauro Paternostro) из Университета Квинса (Великобритания), один из авторов исследования. 
 
Впрочем, практическая реализация предложенной схемы квантового двигателя тоже не является чем-то фантастическим и отдаленным, считают авторы исследования. Более того – ученые намерены экспериментально воплотить придуманный ими двигатель в самое ближайшее время.
 
Патерностро и его коллеги уже ведут переговоры с представителями некоторых научных организаций в Европе, чтобы проверить  свою теорию. В частности, они хотят получить доступ к определенному оборудованию, чтобы сначала поймать одиночный атом при помощи лазера, а затем подвергнуть его тепловым преобразованиям цикла Отто.
 
Если физикам удастся уже на практике доказать свою правоту, это может привести к повсеместному распространению максимально эффективных микродвигателей квантовых и нано- масштабов, спектр применения которых может оказаться весьма впечатляющим.
 

Источник

Это также будет Вам интересно:
iMag.one - Самые важные новости достойные вашего внимания из более чем 300 изданий!